1. Suppose that

$$\triangle f = -div(grad(f))$$

for smooth functions on a Riemannian manifold.

(a) Define the quotient

$$Q(f) = \frac{\left\|\nabla f\right\|^2}{\left\|f\right\|^2}$$

on nonzero smooth functions and show that it is defined for all nonzero $f \in H^1(M)$. This amounts to showing that if $f_n \to f \neq 0$ in the $H^1(M)$ norm, then $Q(f_n)$ is Cauchy.

(b) Use this to show that if

$$\dot{H} = \{f \in H^1(M) : \int_M f = 0\}$$

then

$$C \left\|\nabla f\right\|^2 \ge \left\|f\right\|^2, f \in \dot{H}$$

for some positive constant C.(Hint: what is the kernel of $\triangle)$

(c) Show that if $g \in L^2(M)$ with $\int_M g = 0$ then there is some $f \in \dot{H}$ solving

$$\triangle f = g$$

weakly.

- (d) (Hard) Deduce that f ∈ H²(M). (Hint:Once you have existence in H¹ = W^{1,2} use a partition of unity to work in local coordinates for regularity. Is △ elliptic, what is its symbol?)
- (e) (Hard) Compute the second variation

$$\frac{d^2}{dt^2}|_{t=0}Q(f+th)$$

where $f, h \in \dot{H}$. Use this to show that any g has a UNIQUE (weak) solution $f \in \dot{H} \cap H^2(M)$. Show that this is not unique in $H^2(M)$. There is a strict condition that becomes non-strict when considering $H^2(M)$, what is it?

(f) (Hard) Show that the operator

$$\triangle + 1 : H^2(M) \to L^2(M)$$

is invertible. (Note: You can therefore, using Rellich-Kondrachov and the theory of compact operators, deduce that there is an orthonormal basis of eigenvectors as in the next problem.)

2. Suppose that there exists an orthonormal basis $\{v_i\}$ of eigenvectors for

$$\Delta_k: W^{1,2}\Omega^k(M) \subseteq L^2\Omega^k(M) \to L^2\Omega^k(M)$$

with corresponding eigenvalues $\{\lambda_i\}$. Then $0 \leq \lambda_i \leq \lambda_{i+1}$ and the only accumulation point of the eigenvectors is infinity. With this in mind, define the heat operator on $L^2\Omega^k(M)$ by

$$e^{-t\Delta_k}f = \sum_{i=1}^{\infty} e^{-t\lambda_i} \langle v_i, f \rangle v_i$$

- (a) Show this defines an element of $L^2\Omega^k(M)$, and that $e^{-t\Delta_k}$ is linear.(Hint: Check Folland's chapter on Hilbert spaces)
- (b) Show that $f = f_H + f_{\perp}$ where $f_H \in \ker \triangle_k$ and $f_{\perp} \perp \ker \triangle_k$. Deduce that

$$\begin{aligned} \left\| e^{-t\Delta_k} f_\perp \right\|_{L^2} &\leq e^{-t\lambda_i} \left\| f_\perp \right\|_{L^2} \\ e^{-t\Delta_k} f_H &= f_H \end{aligned}$$

where λ_i is the lowest non-zero eigenvalue. (Hint: Any finite dimensional subspace of a Hilbert space is closed.)

- (c) Conclude that $e^{-t \Delta_k} f \to f_H$ in $L^2 \Omega^k(M)$
- (d) (Much harder) Show that

$$\left\| e^{-t \Delta_k} f_{\perp} \right\|_{H^1} \le C \left\| f_{\perp} \right\|_{H^1}, t > 1$$

where C depends only on the eigenvalues.

- (e) (Extremely hard) Show that e^{-tΔ_k}f → f_H in W^{l,2}Ω^k(M) for each l and deduce that if f ∈ Ω^k(M) is closed then f, f_H represent the same cohomology class.(You will need some sophisticated tools from Lee's chapter on de Rham cohomology, combined with the knowledge that if f is smooth then the form ω(x, t) = e^{-tΔ_k}f(x) is smooth on the product M × [0, ∞))
- 3. Define L_{ω} as in lecture 6.
 - (a) Show that if S ⊆ L²Ω^k(M) is a subspace, then its completion, defined as the set of limits of Cauchy sequences in the L²-norm is a welldefined subspace of L²Ω^k(M), and is a Hilbert space.
 - (b) (Very Hard) Show that there exists a positive constant C such that if $d\alpha = 0$ and $\alpha \perp \ker d^*$ then

$$\|\alpha\|_{L^2} \le C \, \|d^*\alpha\|_{L^2}$$

and deduce that if $\beta \in L_{\omega}$ then

$$|\langle \beta - \omega, \alpha \rangle_{L^2}| \le C \, \|\beta - \omega\|_{L^2} \, \|d^*\alpha\|_{L^2}$$

for any $\alpha \in \Omega^k(M)$.(Hint: For the second part show that both sides only depend on $\alpha - \alpha_{\ker d^*}$, where $\alpha_{\ker d^*}$ is the orthogonal projection.)

(c) Show that if $\beta_n \rightharpoonup \gamma$ (weak convergence) where $\beta_n \in L_{\omega}$, then there exists a positive constant K such that

$$|\langle \gamma - \omega, \alpha \rangle_{L^2}| \le K \, \|d^* \alpha\|_{L^2}$$

(d) Deduce using parts a) and c) that $\gamma \in L_\omega$